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Compatibility in D-Posets

FrantiSek Kopka'
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In this paper the Boolean D-poset is defined and it is showed that every subset
of a Boolean D-poset is a compatible set.

1. INTRODUCTION

The basic axiomatic models of quantum mechanics are the quantum
logics & (Busch et al., 1991) or orthoalgebras &f (Randall and Foulis, 1981;
Foulis ez al., 1992). Very important in this theory is the notion of a compatible
subset of ¥ (or o, respectively), which represents simultaneously verifi-
able events.

There exist alternative models of quantum mechanics, for example, F-
quantum spaces (RieCan, 1988), F-quantum posets (Dvurecenskij and Chova-
nec, 1988), and their generalization—the quasiorthocomplemented posets
(Chovanec, 1993), where the compatibility of subsets has been studied.

The compatibility of a subset of elements in these cases means that they
belong to the same Boolean subalgebra which is contained in a corresponding
structure, which is the case of classical mechanics.

Recently there has appeared a new axiomatic model, D-posets, intro-
duced in Kopka and Chovanec (1994), which generalizes quantum logics,
orthoalgebras, as well as the set of all effects (Dvurecenskij, n.d.). In this
model, a difference operation is a primary notion from which it is possible
to derive other usual notions that are important for measurements.

D-posets have been inspired by the possibility to introduce fuzzy set
ideas into quantum structure models (Kopka, 1992). On these structures, so-
called D-posets of fuzzy sets, compatibility has been studied (K6pka, n.d.-a).
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The aim of the present paper is to show that every subset of a so-called
Boolean D-poset is a compatible set. Although the definition of a compatible
subset of a D-poset is presented in such a way that for a D-poset which at
the same time is a quantum logic, this notion is equivalent to the notion of
compatibility in a quantum logic, we cannot say anything similar about the
existence of such a Boolean subalgebra as in the case of a quantum logic.
This fact calls for a new look at the compatibility in D-posets.

2. D-POSETS

Let (P, =) be a nonempty partially ordered set (poset). A partial binary
operation \ is called a difference on P, and an element b\a is defined in P
if and only if @ = b, and the following conditions are satisfied:

(D1) b\a = b.
(D2) b\(b\a) = a.
(D3) Ifa=<b = c, then c\b = c\a and (c\a)\(c\b) = b\a.

Let (P, =, \) be a poset with a difference and let 1 be the greatest
element in P. The structure (P, <, \, 1) is called a D-poser.

Example 1. Let I be a family of all real functions from a nonempty set
X into the unit interval [0, 1]. Let = be a partial ordering on F such that f
= g if and only if f(¢) = g(¢) for every t € X. Let ®: [0, 1] — [0, =) be an
injective increasing continuous function such that ®(0) = 0. A partial binary
operation \ defined by the formula

(g\N(1) = OHD(g() — P(f (1))

forevery f, g € F, f = g, t € X, is the difference on F. The system (F; =<,
\, 1(¥) = 1) is a D-poset.

Example 2. Let (L, =, L, 1, 0) be an orthomodular poset (see, e.g., Ptdk
and Pulmannovd, 1991), We put b\a = b A a* foreverya, b € L, a < b.
Then L is a D-poset.

Let P be a D-poset. We put a* := 1\a for any a € P. We say that two
elements a and b of P are orthogonal, and write a L b, if a < b* (or
equivalently b < ag*).

The properties of a D-poset (Kopka and Chovanec, 1994) enable us to
define a sum operation on P, that is, a partial binary operation & on P
(Dvurecenskij, n.d.; Hedlikovd and Pulmannovéd, n.d.) given by: a © b is
defined if and only if a and b are orthogonal and
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a ® b= I\(\a)\b) = IN(1\D)\a)

The partial binary operation € on P is commutative and associative (Hedli-
kova and Pulmannovi, n.d.; Dvureenskij, n.d.).

Let F = {a,, ..., a,} be a finite sequence of P. According to Dvurecen-
skij (n.d.), recursively we define for n = 3

a, D DPa, =@, Da,)) Da,

supposing that a; @ --- @ a,-, and (@, D --- D a,-)) D a, exist in P.
Definitionally, we puta, @ --- @ a,:= a,ifn = l,anda, & --- P q, :=
0 if » = 0. Then for any permutation (iy, ..., i,) of (1, ..., n) and any &
with 1 = k = n we have

aIGB---@an:ail@"'@a,-n,
a®-Da,=@D - Da)® (@ D Day

Let P be a D-poset. We say that a finite system F = {ay, ..., a,} of
P is @-orthogonal iff a, © --- D q, exists in P and write

n
al@"'@an:@ai
=1

An arbitrary system G of P is @-orthogonal if every finite subsystem F of
G is ©-orthogonal.

Definition 1. Let P be a D-poset. We say that the finite subset F = {a,,
..., a,} C P is compatible (in P) if there exists a ©-orthogonal system G
of elements of P, G = {g,t € T}, such that a; = ©{g,; t € T}, where T;
is the finite subset of 7, foreveryi =1, ..., n.

An arbitrary subset £ C P is compatible (in P) if every finite subset of
E is compatible (in P).

3. BOOLEAN D-POSETS

In the present section we give the sufficient condition for the compatibil-
ity of a subset of a D-poset.

Let (P, =) be a poset with the smallest element 0. Let © be a binary
operation on P such the following conditions are satisfied for every a, b, ¢
e P:

BDl) a©0=a.

(BD2) Ifa<b, thencOb=cSa

BD3) (cSa)Cb=(cOb)Oa.

(BD4) bO(bSa)=a (@b



1528 Képka

Proposition 1. (Kdpka, n.d.-b). Let (P, <) be a poset with the smallest
element 0 and let © be a binary operation on P satisfying the conditions
(BD1)—(BD4). Then the following assertions are true for every a, b, ¢, d € P:

i) bOa=hb.

i) a©a=0.

(i) Ifa<b,thena®© b = 0.

iv) 2SS (cOh=0a)3 BSOS o).

v) Ifasb=cthencOb=cOaand (cOa)O (cCh =
bOSa.

(i) fa=b, thenbO (bSO a) = a.

(i) Ifb=c,thenbOa=<cOa.

(vili)y Ifb=c,then(c©a)S b Oa)=(cObLO(a®b)O(a
© o).

(ix) fbSa=0andaS b =0,thena = b.

x) fab=candc©Oa=bOa,thencSb=a8b.

(xi) Let | be the greatest element in P, a, b,c e PIfa<c,a =
bandc©a=bOa, then b = c.

Proposition 1 proves that the binary operation © satisfies the conditions
(D1)—(D3), i.e., it is a difference on P.

Definition 2. Let (P, <) be a poset with the smallest element 0 and with
the greatest element 1. Let © be a binary operation on P satisfying the
conditions (BD1)~(BD4). The system (P, <, 0, 1, ©) is called a Boolean
D-poset.

Example 3. Let the binary operation © on the family of all real functions
F from Example 1 be defined by the following formula:

e @) - DU if £ = g
(g ©N0) = {0 it 70 > g0

Then (F, =, ©, 1, 0) be a Boolean D-poset.
Example 4. Every MV-algebra (Chang, 1959) is a Boolean D-poset.

We remark that every Boolean D-poset P is a D-poset and the binary
operation © on P generates the binary operation + on P defined via a + b
:= (at © b)*, where at = |1 © a for every a € P. The operation + on P
has the following properties:

Proposition 2 (Kopka, n.d.-b). Let (P, <, 0, 1, ©) be a Boolean D-poset.
Then the following assertions are true for every a, b, ¢, € P:

(1) a+b=a,b
(2) a+ b= b+ a (commutativity).
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3) (@ +b)+ c=a+ b+ ¢ (associativity).

4 a+0=a

B) fasb thenaDc=bDec.

6) a+PSa)=b+ (a©b).

7 bOa)+BOBOSa)=h

(8) Ifa=<bh thena+ (bSa)=b.

9 Ha=sc,b=cSathena+b=cS(c®aOb).

Remark 1. Let P be a Boolean D-poset, let G be a system of elements
of b, G = {g, t € T}. Then the system G is +-orthogonal (in the sense of
D-posets) if the sums +{g, ¢t € T\}, +{g, t € T,} are orthogonal, i.e.,
g, t e T} =10 (+{g,t € T,}), for finite subsets T; and T, of 7, such
that Ty N T, = B.

Theorem 1. Let (P, <, 0, 1, ©) be a Boolean D-poset. Then an arbitrary
subset £ of P is a compatible set (in P).

Proof. 1t suffices to prove that for every finite subset E of P, E = {a;,
..., a,}, there exists a +-orthogonal system G of elements of P, G = {g,;
t € T}, such that a; = +{g,; ¢t € T;}, where T; is a finite subset of 7, i =
1, ..., n. The existence of the system G will be proved by mathematical
induction according to the number of the elements of the set E.

1.Let n = 2, i.e., E = {a, b}. Then the system

G={a9bbOaaS@Ob =00 0bOa)

is +-orthogonalanda = @© @ © b))+ @S b, b=(bS b S a) +
b S a).

2. We assume that the previous assertion holds for every subset £ of P

containing n» — 1 elements, i.e., if £ = {ay, ..., a,—;} then there exists a
+-orthogonal system G of elements of P, G = {g,, t € T}, such that g; =
+{g, t € T;}, where T; is a finite subsetof 7, i =1, ..., n — 1.

Without loss of generality we assume that
n-1
G = {g,,re U T,}= IR A
Let now E = {a, ..., a,—1, a}. We put
by =a
b=b-,0g forevery i=1,...,k

It is evident that b;—| = b; foreveryi =1, ..., k.
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Now we construct the system of elements of P in the following way:
c;=b_,0b forevery i=1,...,k
Cis1 = by
By the properties of the binary operation © we have
1 =bOb=a00wOg)=g9ESa=g
a=bObh=0Sg)O(a©g)Og)
=$0(£0@0g) =g

k=b- O, =((@Og)S - O g )
O(@©g)O S g-1)O g
=490 OO - Og-1)) =g
Gr1=b, =gl - g

Then the system {g, © ¢}, ..., & O ¢ Cls «+ . » Ch» Cin} is +-orthogonal,
g =(g:©c)+c,foreveryi=1,...,k and

o+ F
=+ -+ o) F o+ )
=+ Fa)F b =+ F o) F (oo F b))
=(c;+ " F )+ (B © b)) + b))
=(c;+ -+ )+ by

"'=(aeb|)+b1=a u
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